Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38623994

RESUMO

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Assuntos
Caseínas , MicroRNAs , Feminino , Animais , Caseínas/genética , Caseínas/metabolismo , Proteínas do Leite , Cabras/fisiologia , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glândulas Mamárias Animais/metabolismo
2.
Food Res Int ; 179: 114021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342541

RESUMO

Sheep milk is rich in fat, protein, vitamins and minerals and is also one of the most important sources of natural bioactives. Several biopeptides in sheep milk have been reported to possess antibacterial, antiviral and anti-inflammatory properties, and they may prevent type 2 diabetes (T2D), disease and cancer. However, the precise mechanism(s) underlying the protective role of sheep milk against T2D development remains unclear. Therefore, in the current study, we investigated the effect of sheep milk on insulin resistance and glucose intolerance in high-fat diet (HFD)-fed mice, by conducting intraperitoneal glucose tolerance tests, metabolic cage studies, genomic sequencing, polymerase chain reaction, and biochemical assays. Hyperinsulinemic-euglycemic clamp-based experiments revealed that mice consuming sheep milk exhibited lower hepatic glucose production than mice in the control group. These findings further elucidate the mechanism by which dietary supplementation with sheep milk alleviates HFD-induced systemic glucose intolerance.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Ovinos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Leite/metabolismo
3.
Food Res Int ; 175: 113818, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129015

RESUMO

Human and animal exposure to microplastics (MPs) contained in food is inevitable because of their widespread existence in the environment. Nevertheless, MPs toxicity studies in ruminants often lack attention. Here, we assessed the cytotoxicity of polystyrene microplastics (PS MPs) on goat mammary epithelial cells (GMECs). Compared to controls, PS MPs treatment significantly reduced cell viability, altered cell morphology and disrupted organelle integrity. Detection of membrane potential and reactive oxygen species (ROS) suggested that PS MPs induced mitochondrial dysfunction and oxidative stress. Further transcriptome analysis also confirmed alterations in these pathways. In addition, several genes related to endoplasmic reticulum (ER) homeostasis were significantly regulated in the transcriptional profile. Subsequent experiments confirmed that PS MPs induce ER stress via the PERK/eIF2α/CHOP pathway, accompanied by intracellular Ca2+ overload. Meanwhile, downstream activation of the Bax/Bcl-2 pathway and caspase cascade released apoptotic signals, which led to apoptosis in GMECs. Interestingly, the addition of PERK inhibitor (ISRIB) attenuated PS MPs-induced ER stress and apoptosis, which suggests that ER stress may exacerbate PS MPs-induced cytotoxicity. This work reveals the impact of MPs on mammalian cytotoxicity, enriches the mechanisms for the toxicity of MPs, and provides insight for further assessment of the risk of MPs in food.


Assuntos
Microplásticos , Plásticos , Animais , Humanos , Microplásticos/toxicidade , Microplásticos/metabolismo , Estresse do Retículo Endoplasmático , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mamíferos/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240097

RESUMO

The accumulation of ovarian granulosa cell (GC) apoptosis underlies follicular atresia. By comparing the previous sequencing results, miR-486 was found to be differentially expressed at higher levels in the monotocous goat than in the polytocous goat. Unfortunately, the miRNA-mediated mechanisms by which the GC fate is regulated are unknown in Guanzhong dairy goats. Therefore, we investigated miR-486 expression in small and large follicles, as well as its impact on normal GC survival, apoptosis and autophagy in vitro. Here, we identified and characterized miR-486 interaction with Ser/Arg-rich splicing factor 3 (SRSF3) using luciferase reporter analysis, detecting its role in GC survival, apoptosis and autophagy regulation through qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, mitochondrial membrane potential and monodansylcadaverine, etc. Our findings revealed prominent effects of miR-486 in the regulation of GC survival, apoptosis and autophagy by targeting SRSF3, which might explain the high differential expression of miR-486 in the ovaries of monotocous dairy goats. In summary, this study aimed to reveal the underlying molecular mechanism of miR-486 regulation on GC function and its effect on ovarian follicle atresia in dairy goats, as well as the functional interpretation of the downstream target gene SRSF3.


Assuntos
Atresia Folicular , MicroRNAs , Animais , Feminino , Atresia Folicular/genética , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , Apoptose/genética , Cabras/fisiologia , Autofagia/genética
5.
Food Res Int ; 167: 112682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087259

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have recently been used as food preservatives and additives because of their good antibacterial and nutritional functions. This study performed RNA-seq analyses to evaluate the potential toxicity of ZnO NPs on goat mammary epithelial cells (GMECs) in vitro. Our results suggested that the ZnO NP treatment significantly reduced GMEC viability in a time- and dose-dependent manner. Transcriptomic analysis showed that ZnO NP exposure changed the expression levels of more than 500 genes in GMECs, including various biological pathways. We observed that decreased mitochondrial membrane potential caused mitochondrial dysfunction. Further study indicated that the treatment of cells with ZnO NPs resulted in the accumulation of reactive oxygen species (ROS), which led to oxidative stress. Meanwhile, the expression of genes (TNFα, TNFR1, FADD, Caspase 8 and Caspase 6) associated with the death receptor pathway was upregulated, which indicated the death receptor-mediated extrinsic apoptosis pathway was activated. Moreover, the expression levels of Bax, Cytc, Caspase 3 and Caspase 9 were upregulated, while the expression levels of Bcl2 were downregulated, which indicated mitochondria-mediated intrinsic apoptosis pathway was activated. More notably, ZnO NP exposure increased the expression levels of ER stress-related genes (PERK, ATF4, eIF2α and CHOP) and proteins (p-PERK, p-eIF2α, PERK and CHOP). Furthermore, gene ontology (GO) terms and genes related to autophagy were altered, suggesting that exposure to ZnO NPs might activate autophagy in GMECs. In summary, our findings showed that ZnO NPs could exert significant toxic effects on GMECs through multiple mechanisms. These pathways are related to each other and influence each other to participate in ZnO NPs-induced the damage of GMECs. Thus, their safe use in the feed and food industry should be considered. Meanwhile, RNA-seq might represent a new method of assessing the toxicity mechanisms of nanomaterials.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Aditivos Alimentares , Cabras , Nanopartículas/toxicidade , Células Epiteliais , Receptores de Morte Celular
6.
Anim Biotechnol ; 34(4): 1314-1323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34985398

RESUMO

Litter size is a critical economic trait in livestock, but only a few studies have focused on associated indel mutations in BMPR1B, a key regulator of ovulation and litter size in sheep. We evaluated the effects of BMPR1B mutations on the reproductive performance of sheep. We used Hu, East Friesian, and East Friesian/Hu crossbred sheep as experimental subjects and identified a novel 90 bp deletion in BMPR1B, which coincides with the c.746A > G (FecB mutation) genotype. The correlation between the two loci and litter size was then evaluated. We identified three genotypes for the Del-90bp locus, namely, II, ID, and DD, and three genotypes for the c.746A > G locus, namely ++, B+, and BB. Both Del-90bp and c.746A > G significantly affected the litter size of Hu and East Friesian/Hu crossbred sheep. Linkage disequilibrium analysis revealed a strong linkage disequilibrium between these loci in Hu sheep and the F1 population (r2 > 0.33), which suggests that detecting this 90 bp deletion might be a simple method to identify the likely carriers of c.746A > G. However, the function of this 90-bp deletion still needs further exploration. We provide genetic data that can be used as a reference for the breeding of improved prolific traits in sheep.


Assuntos
Reprodução , Gravidez , Feminino , Ovinos/genética , Animais , Tamanho da Ninhada de Vivíparos/genética , Pareamento de Bases , Mutação , Genótipo
7.
Animals (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36496794

RESUMO

Corynebacterium pseudotuberculosis (C. pseudotuberculosis) is a zoonotic chronic infectious disease. It mainly occurs in dairy goats reared in herds, and once it invades the dairy goats, it is difficult to completely remove it, causing great harm to the development of the sheep industry. This study mainly was based on TMT-based quantitative proteomics and RNA-seq methods to measure the spleen samples of infected dairy goats at different time periods. Nine four-month-old dairy goats were divided into three groups, with three goats in each group. The dairy goats in the first group (NC group) were inoculated with 1.0 mL of sterilized normal saline subcutaneously, and the second (72 h group) and third groups (144 h group) were inoculated with 1.0 mL of 1 × 107 cfu/mL bacterial solution subcutaneously in the neck. Significant changes in the protein and mRNA expression were observed in different infection and control groups. In the 72 h group, 85 genes with differential genes and proteins were up-regulated and 91 genes were down-regulated in this study. In the 144 h group, 38 genes with differential genes and proteins were up-regulated and 51 genes were down-regulated. It was found that 21 differentially expressed genes and proteins were co-up-regulated in the two groups. There were 20 differentially expressed genes and proteins which were co-down-regulated in both groups. The 72 h group were mainly enriched in protein processing in the endoplasmic reticulum, lysosome, amino sugar and nucleotide sugar metabolism and the estrogen signaling pathway. In the 144 h group, they were protein processing in the endoplasmic reticulum pathway which was enriched by mRNA-proteins pairs co-upregulated by the five pairs. The combined transcriptomic and proteomic analyses were performed to provide insights into the effects of C. pseudotuberculosis through several regulatory features and pathways. We found that in the early stage of infection (72 h), the co-upregulated gene-protein pairs were enriched in multiple pathways, which jointly defended against a bacterial invasion. However, in the later stages of infection (144 h), when the disease stabilizes, a few co-upregulated gene-protein pairs played a role in protein processing in the endoplasmic reticulum pathway. In addition, the mRNA and protein expressions of dairy goats infected with the bacteria at different periods of time indicated the adaptability of dairy goats to the bacteria. At the same time, it guides us to carry out a corresponding treatment and feeding management for dairy goats according to different periods of time.

8.
Anim Biotechnol ; : 1-7, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441629

RESUMO

Dairy goats are significant livestock that provide high-quality milk sources in the world. The wattles trait is an evident phenotypic character on the neck of a dairy goat, which is considered to be under genetic control. We collected samples of 189 dairy goats, including 94 with wattles and 95 without wattles, from four different farms and multiple dairy goat breeds. The samples were genotyped with the GeneSeek Genomic Profiler Goat 70 K SNP chip. Genome-wide association studies (GWAS) in wattles have identified associations with single nucleotide polymorphisms (SNPs) at chromosome 10. In this area, an extremely strong association locus was assigned to FMN1 (Formin 1) belongs to the formin homology family and is associated with limb deformity, other candidate genes of interest confirmed for wattles were ARHGAP11A (Rho GTPase Activating Protein 11 A) and GJD2 (Gap Junction Protein Delta 2). Meanwhile, we found the presence or absence of wattles had no significant effect on milk yield. This research will provide genetic resources useful to explore genetic factors affecting the trait.

9.
J Cell Mol Med ; 26(9): 2543-2556, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411593

RESUMO

The growth of endometrial stromal cells (ESCs) at implantation sites may be a potential factor affecting the success rate of embryo implantation. Incremental proofs demonstrated that ncRNAs (e.g. miRNAs, lncRNAs and circRNAs) were involved in various biological procedures, including proliferation and apoptosis. In this study, the role of miR-100-5p on proliferation and apoptosis of goat ESCs in vitro and embryo implantation in vivo was determined. The mRNA expression of miR-100-5p was significantly inhibited in the receptive phase (RE) rather than in the pre-receptive phase (PE). Overexpression of miR-100-5p suppressed ESCs proliferation and induced apoptosis. The molecular target of MiR-100-5p, HOXA1, was confirmed by 3'-UTR assays. Meanwhile, the product of HOXA1 mRNA RT-PCR increased in the RE more than that in the PE. The HOXA1-siRNA exerted significant negative effects on growth arrest. Instead, incubation of ESCs with miR-100-5p inhibitor or overexpressed HOXA1 promoted the cell proliferation. In addition, Circ-9110 which acted as a sponge for miR-100-5p reversed the relevant biological effects of miR-100-5p. The intrinsic apoptosis pathway was suppressed in ESCs, revealing a crosstalk between Circ-9110/miR-100-5p/HOXA1 axis, PI3K/AKT/mTOR, and ERK1/2 pathways. To further evaluate the progress in study on embryo implantation regulating mechanism of miR-100-5p in vivo, the pinopodes of two phases were observed and analysed, suggesting that, as similar as in situ, miR-100-5p was involved in significantly regulating embryo implantation in vivo. Mechanistically, miR-100-5p performed its embryo implantation function through regulation of PI3K/AKT/mTOR and ERK1/2 pathways by targeting Circ-9110/miR-100-5p/HOXA1 axis in vivo.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Proliferação de Células/genética , Implantação do Embrião/genética , Cabras/genética , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Células Estromais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Gen Comp Endocrinol ; 321-322: 114027, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35300988

RESUMO

Paired-like homeodomain transcription factor 2 (PITX2), a major driver of multiple tissue development, is a transcription factor that regulates gene expression in organisms. However, it is unknown if PITX2 regulates goat granulosa cell (GC) steroidogenesis. Therefore, we investigated the role and mechanism of PITX2 in GC steroidogenesis. In our study, PITX2 significantly facilitated the secretion level of estrogen and progesterone through increasing CYP11A1, CYP19A1, and STAR mRNA and protein expressions in GCs. Furthermore, PITX2 participated in the WNT pathway, enhancing the production of E2 and P4 in GCs. PITX2 in GCs increased the DVL-1 and CTNNB1 expression, involved in the WNT/ß-catenin signaling pathway related to steroidogenesis. Moreover, GC steroidogenesis-related gene translation was decreased by CTNNB1-siRNA but enhanced when transfected with PITX2. PITX2 regulates secretion of E2 and P4 from GCs via the WNT/ß-catenin pathway and alters GC proliferation and steroidogenesis. These findings will help understand the role of PITX2 in goat ovarian follicular development and oocyte maturation.


Assuntos
Via de Sinalização Wnt , beta Catenina , Animais , Feminino , Cabras/metabolismo , Células da Granulosa/metabolismo , Fatores de Transcrição/genética , beta Catenina/genética , beta Catenina/metabolismo
11.
Anim Biotechnol ; 33(2): 321-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32730101

RESUMO

Pou2F3 (POU class 2 homeobox 3) is found to be ubiquitously expressed in multiple epidermal layer cells to mediating proliferation. Although some POU factors exert a crucial regulation in mammary epithelial cells (MECs), the biological function of Pou2F3 is unclear. In this study, we aimed to investigate the endogenous potential effects of Pou2F3 on the proliferation and the roles of PI3K/AKT/mTOR signaling pathway in MECs. We used small interfering RNA to silence Pou2F3 expression. The interfering efficiency of Pou2F3 was confirmed by using RT-qPCR and Western blot. The cell viability and proliferation were indicated by Cell Counting Kit-8 and EdU assays. Flow cytometry was performed to evaluate the cell apoptosis in MECs. These results demonstrated that Pou2F3 potently suppressed the proliferation and induced the apoptosis of MECs. Consistently, the primary protein expressions of PI3K/AKT/mTOR signaling pathway were examined by Western blot. Pou2F3 silencing significantly increased the phosphorylation of PI3K, AKT and mTOR expressions. Moreover, Pou2F3 silencing reduced the ratio of BCL-2/BAX protein expression. Our findings show that Pou2F3 silencing can induce the proliferation of MECs and decrease the cell apoptosis, which suggest that Pou2F3 may serve as a potential upstream regulator of PI3K/AKT/mTOR signaling pathway in MECs.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Cabras/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
12.
BMC Genomics ; 22(1): 703, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583635

RESUMO

BACKGROUND: Protein phosphorylation plays an important role in lactation. Differentially modified phosphorylation sites and phosphorylated proteins between peak lactation (PL, 90 days postpartum) and late lactation (LL, 280 days postpartum) were investigated using an integrated approach, namely, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and tandem mass tag (TMT) labeling, to determine the molecular changes in the mammary tissues during the different stages of goat lactation. RESULTS: A total of 1,938 (1,111 upregulated, 827 downregulated) differentially modified phosphorylation sites of 1,172 proteins were identified (P values < 0.05 and fold change of phosphorylation ratios > 1.5). Multiple phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, JUN, and TSC2 were different in PL compared with LL. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the calcium signaling pathway, oxytocin signaling pathway and MAPK signaling pathway were enriched. The western blot results showed that the phosphorylation levels of ACACA (Ser80), EIF4EBP1 (Thr46) and IRS1 (Ser312) increased and JUN (Ser63) decreased in PL compared with LL. These results were consistent with the phosphoproteome results. CONCLUSIONS: In this study, we identified for the first time the differentially modified phosphorylation sites in goat mammary tissues between PL and LL. These results indicate that the multiple differentially modified phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, TSC2, and JUN and proteins involved in the calcium signaling pathway, oxytocin signaling pathway, and MAPK signaling pathway are worthy of further exploration.


Assuntos
Cabras , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Feminino , Lactação , Glândulas Mamárias Animais/metabolismo , Fosforilação
13.
Front Cell Dev Biol ; 9: 660933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277608

RESUMO

The health of mammary gland is essential for lactation. Epidermal growth factor (EGF) is reported to play an important role in lactation initiation and miR-223 is a conserved microRNA in anti-inflammation. In this study, EGF was found to induce a higher expression of miR-223 in goat mammary epithelial cell (gMEC). The downstream genes of miR-223 were screened by RNA sequencing, including Interferon-stimulated gene product 15 (ISG15), a pivotal immune responder, which was detected to be downregulated by EGF and miR-223. Due to the correlation between inflammation and apoptosis, the gMEC apoptosis modulated by EGF, miR-223, and ISG15 was investigated, and the protein expressions of Bcl-2/Bax, Caspase 3 and p53 were examined to evaluate the apoptosis of gMEC. The protein expressions of p-STAT3/STAT3, PR, FOXC1, and HOXA10, which had been shown to be related to inflammation, were detected to assess the inflammation of gMEC. This study provided a regulation axis, EGF/miR-223/ISG15, and illustrated its regulation to gMEC apoptosis and inflammation.

14.
Biology (Basel) ; 10(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070240

RESUMO

Estrous cycle is one of the placental mammal characteristics after sexual maturity, including estrus stage (ES) and diestrus stage (DS). Estrous cycle is important in female physiology and its disorder may lead to diseases, such as polycystic ovary syndrome, ovarian carcinoma, anxiety, and epilepsy. In the latest years, effects of non-coding RNAs and messenger RNA (mRNA) on estrous cycle have started to arouse much concern, however, a whole transcriptome analysis among non-coding RNAs and mRNA has not been reported. Here, we report a whole transcriptome analysis of goat ovary in estrus and diestrus periods. Estrus synchronization was conducted to induce the estrus phase and on day 32, the goats shifted into the diestrus stage. The ovary RNA of estrus and diestrus stages was respectively collected to perform RNA-sequencing. Then, the circular RNA (circRNA), microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA databases of goat ovary were acquired, and the differential expressions between estrus and diestrus stages were screened to construct circRNA-miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA networks, thus providing potential pathways that are involved in the regulation of estrous cycle. Differentially expressed mRNAs, such as MMP9, TIMP1, 3BHSD, and PTGIS, and differentially expressed miRNAs that play key roles in the regulation of estrous cycle, such as miR-21-3p, miR-202-3p, and miR-223-3p, were extracted from the network. Our data provided the miRNA, circRNA, lncRNA, and mRNA databases of goat ovary and each differentially expressed profile between ES and DS. Networks among differentially expressed miRNAs, circRNAs, lncRNAs, and mRNAs were constructed to provide valuable resources for the study of estrous cycle and related diseases.

15.
Genes (Basel) ; 12(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946970

RESUMO

MicroRNAs play an essential role in mammary gland development, and involution is a factor that limits lactation. Chi-miR-8516 is one of the validated microRNAs that regulates the expression of STC1 and MMP1, which surge during the involution of the mammary gland. This study aims to explore the direct or indirect regulation of STC1 and MMP1 by chi-miR-8516 and the regulation of chi-miR-8516 by circ-140. In goat mammary epithelial cells, we found that chi-miR-8516 takes circ-140 as a sponge and regulates MMP1 expression by targeting STC1 and promoting the phosphorylation of MAPK. The examination of αs1-/ß-casein and lipid showed the modulation of the circ-140/chi-miR-8516/STC1-MMP1 axis in casein secretion and lipid formation, which was regulated by the phosphorylation of mTOR and STAT5. This study illustrates an axis that regulates the synthesis of milk components, and explores the pathways in which the axis participates.


Assuntos
Glicoproteínas/metabolismo , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , MicroRNAs/metabolismo , Animais , Caseínas/genética , Caseínas/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Glicoproteínas/genética , Cabras , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/citologia , Metaloproteinase 1 da Matriz/genética , MicroRNAs/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
Anim Reprod Sci ; 229: 106750, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940561

RESUMO

The TG interaction factor 1 (TGIF1) is of the TALE homologue domain protein family and is considered as a transcriptional repressor of SMAD protein that interacts with DNA through a specific consensus-binding site for TG and recruits mSin3A and histone deacetylases to the SMAD complex. In this study, there is the first detailed description of TGIF1 on steroidogenesis in goat granulosa cells. When there is a relatively greater expression of the TGIF1 gene, there is a lesser abundance of CYP11A1, CYP19A1, and StAR mRNA transcript and protein and 3ß-HSD mRNA transcript in granulosa cells of goats. Furthermore, there were lesser concentrations of 17ß-estradiol (E2) and progesterone (P4) in culture medium when there was greater TGIF1 gene expression and there were greater concentrations of these hormones in the culture medium when there was lesser TGIF1 gene expression. There may be functions of TGIF1, therefore, in suppression of SMAD-induced E2 and P4 production and in decreasing the phosphorylation of SMAD2/3 in granulosa cells of goats and relative abundance of the SMAD2/3 protein transcription factor, SP1. With suppression of TGIF1 gene expression, there was a reversal of SP1-induced suppression of steroidogenesis-related genes. Results of the present study provide insights about the potential mechanism underlying the regulation of granulosa cell steroidogenesis of goats by TGIF1.


Assuntos
Cabras/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Células Cultivadas , Estradiol/biossíntese , Feminino , Regulação da Expressão Gênica , Células da Granulosa/fisiologia , Proteínas de Homeodomínio/genética , Progesterona/biossíntese , Proteínas Repressoras/genética , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Transcrição Sp1/genética
17.
Anim Biotechnol ; 32(5): 627-636, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32167419

RESUMO

Goat milk in some cases is less allergenic than cow milk, therefore, more people drink goat milk in the world, so it is necessary for us to improve the yield and quality of goat milk. Previous studies have shown that some genes are closely related to lactation. Ovarian cancer G protein-coupled 1 (OGR1) is a G protein-coupled receptor discovered recently. OGR1 is widely found in various tissues of organisms and is involved in cell skeleton reorganization, carcinogenesis, cell proliferation, and apoptosis by regulating multiple signaling pathways in cells. However, the modulating effect of OGR1 in lactation is still unknown. Therefore, the objective of this study is to investigate the function of OGR1 in goat mammary epithelial cells (GMECs). Flow cytometry, CCK8, EDU, enzyme-linked immunosorbent assay, and triglyceride test kit assays were performed and we found that OGR1 regulated Bcl-2/Bax ratio, Fas protein expression as well as the phosphorylation of AKT and mammalian target of rapamycin (mTOR). si-OGR1 could enhance the proliferation of GMECs by promoting G1/S phase progression and the synthesis of ß-casein and triglyceride. By contrast, OGR1 repressed GMECs proliferation and down-regulated the synthesis of ß-casein and triglyceride by blocking the PI3K/AKT/mTOR signaling pathway in GMECs.


Assuntos
Caseínas/biossíntese , Cabras , Receptores Acoplados a Proteínas G/genética , Triglicerídeos/biossíntese , Animais , Proliferação de Células , Células Epiteliais/metabolismo , Cabras/genética , Cabras/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
18.
Food Res Int ; 137: 109288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233042

RESUMO

Early life is a crucial period for the development of the intestinal microbiota and is related to the body's immunity. Yet research is lacking regarding the effect of stachyose on infants gut microbiomes at this stage and the mechanism is not clear. Therefore, in this experiment, feces samples collected from infants were transplanted into germ-free mice, to explore the effect of stachyose on the intestinal microbiota and host gut barrier. We found that stachyose promoted the relative abundance of A. muciniphila in human feces; enhanced the symbiotic relationships of A. muciniphila; increased the short-chain fatty acid level, and secretory immunoglobulin A level; reduced the levels of lipopolysaccharide, IL-1, IL-17 and TNF-α through downregulated the expression of NF-κB; increased expression of tight junction proteins (occludin and ZO-1) and goblet cell through A. muciniphila. The intake of stachyose is conducive to promoting the proliferation of beneficial bacteria and enhancing the intestinal barrier in germ-free mice. This research provides a theoretical basis for the use of prebiotics to improve intestinal microbiota and barrier in humans.


Assuntos
Akkermansia , Transplante de Microbiota Fecal , Animais , Humanos , Inflamação , Camundongos , Oligossacarídeos , Verrucomicrobia
19.
J Anim Sci Biotechnol ; 11: 102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072314

RESUMO

BACKGROUND: MiRNAs act as pivotal post-transcriptional gene mediators in the regulation of diverse biological processes, including proliferation, development and apoptosis. Our previous study has showed that miR-101-3p is differentially expressed in dairy goat ovaries compared single with multiple litters. The objective of this research was to explore the potential function and molecular mechanism of miR-101-3p via its target STC1 in goat ovarian growth and development. RESULTS: cDNA libraries were constructed using goat granulosa cells transfected with miR-101-3p mimics and negative control by RNA-sequencing. In total, 142 differentially expressed unigenes (DEGs) were detected between two libraries, including 78 down-regulated and 64 up-regulated genes. GO and KEGG enrichment analysis showed the potential impacts of DEGs on ovarian development. STC1 was singled out from DEGs for further research owing to it regulates reproductive-related processes. In vitro, bioinformatics analysis and 3'-UTR assays confirmed that STC1 was a target of miR-101-3p. ELISA was performed to detect the estrogen (E2) and progesterone (P4) levels. CCK8, EdU and flow cytometry assays were performed to detect the proliferation and apoptosis of granulosa cells. Results showed that miR-101-3p regulated STAR, CYP19A1, CYP11A1 and 3ß-HSD steroid hormone synthesis-associated genes by STC1 depletion, thus promoted E2 and P4 secretions. MiR-101-3p also affected the key protein PI3K, PTEN, AKT and mTOR in PI3K-AKT pathway by STC1, thereby suppressing proliferation and promoting apoptosis of granulosa cells. In vivo, the distribution and expression levels of miR-101-3p in mouse ovaries were determined through fluorescence in situ hybridisation (FISH). Immunohistochemistry results showed that STC1 expression was suppressed in mouse ovaries in miR-101-3p-agonist and siRNA-STC1 groups. Small and stunted ovarian fragments, decreased numbers of follicles at diverse stages were observed using Hematoxylin-eosin (HE) staining, thereby showing unusual ovarian development after miR-101-3p overexpression or STC1 depletion. Inhibition of miR-101-3p manifested opposite results. CONCLUSIONS: Taken together, our results demonstrated a regulatory mechanism of miR-101-3p via STC1 in goat granulosa cells, and offered the first in vivo example of miR-101-3p and STC1 functions required for ovarian development.

20.
Genes (Basel) ; 11(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906580

RESUMO

The endometrium undergoes a series of complex changes to form a receptive endometrium (RE) that allows the embryo to be implanted. The inability to establish endometrial receptivity of livestock causes embryo implantation failure and considerable losses to animal husbandry. MicroRNAs (miRNAs) are a class of noncoding RNAs. Studies have found that miRNAs can regulate many critical physiological processes, including the establishment of RE during embryo implantation. miR-184 is highly expressed in the endometrial receptive period of dairy goats. This study aimed to explore the effect of miR-184 on endometrial epithelial cell (EEC) apoptosis and RE establishment. Stanniocalcin2 (STC2) is a direct target of miR-184, and miR-184 decreases the expression of STC2 in dairy goat EECs. miR-184 can activate EECs apoptosis through the RAS/RAF/MEK/ERK pathway. Additionally, miR-184 increases the expression levels of RE marker genes, such as forkhead box M1 (FOXM1) and vascular endothelial growth factor (VEGF). These findings indicate that miR-184 promotes the apoptosis of endometrial epithelial cells in dairy goats by downregulating STC2 via the RAS/RAF/MEK/ERK pathway, and that it may also regulate the establishment of RE in dairy goats.


Assuntos
Apoptose , Endométrio/patologia , Células Epiteliais/patologia , Glicoproteínas/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo , Animais , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Glicoproteínas/genética , Cabras , Quinases raf/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA